Magnetic Particle Imaging for Quantitative Evaluation of Tumor Response to Magnetic Hyperthermia Treatment Combined with Chemotherapy Using Cisplatin

نویسندگان

  • AKIKO OHKI
  • MINORI TANOUE
  • SAYUMI KOBAYASHI
  • KENYA MURASE
چکیده

This study was undertaken to evaluate the tumor response to magnetic hyperthermia treatment (MHT) combined with cisplatin (MHT+CDDP) using magnetic particle imaging (MPI). Colon-26 cells were implanted into the backs of mice. When the tumor volume exceeded approximately 100 mm3, the mice were divided into control, MHT, CDDP, and MHT+CDDP groups. In the CDDP and MHT+CDDP groups, CDDP (5 mg/kg) was injected intraperitoneally. In the MHT+CDDP group, magnetic nanoparticles [250 mM (14.0 mg Fe/mL) Resovist®]were directly injected into the tumor one hour after CDDP administration, and MHT was performed for 20 min using an alternating magnetic field. In the MHT group, only MHT was performed after the injection of Resovist®. In the MHT+CDDP and MHT groups, MPI images were obtained using our MPI scanner immediately before, immediately after, and 3, 7, and 14 days after MHT. After the MPI studies, we drew a region of interest (ROI) on the tumor in the MPI image and calculated the average and maximum MPI values and the number of pixels within the ROI. In all groups, the relative tumor volume growth (RTVG) was calculated from (V-V0)/V0, where V0 and V were the tumor volumes immediately before and after treatment, respectively. The RTVG value in the MHT+CDDP group was significantly lower than that in the MHT group 3 to 14 days after MHT. It was also significantly lower than that in the CDDP group at 4 to 11 days except at 6 and 9 days after treatment. The average and maximum MPI values normalized by those immediately before MHT in the MHT+CDDP group were significantly higher than those in the MHT group 3 days after MHT. Our results suggested that MPI is useful for quantitatively evaluating tumor response to MHT combined with chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment

Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy

Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.Methods: In this study, to solve he...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors

Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017